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A new class of nonlinear stochastic models is introduced with a view to explore 
self-organization. The model consists of an assembly of anharmonic oscillators, 
interacting via a mean field of system size range, in presence of white, Gaussian 
noise. Its properties are explored in the overdamped regime (Smoluchowski 
limit). The single oscillator potential is such that for small oscillator displace- 
ments it leads to a highly nonlinear force but becomes asymptotically harmonic. 
The shape of the potential can be a single- or double-well and is controlled by a 
set of parameters. Through equilibrium statistical mechanical analysis, we study 
the collective behavior and the nature of phase transition. Much of the analysis 
is analytic and exact. The treatment is not restricted to the thermodynamic limit 
so that we are also able to discuss finite size effects in the model. 
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You boil it in sawdust, you salt it in glue, 
You condense it with locusts and tape, 
Still keeping one principal object in view, 
To preserve its symmetrical shape. 

Lewis Carroll in The Hunting of the Snark. 

1. INTRODUCTION 

In this paper, we use a class of nonlinear stochastic models to study 
self-organization processes. Often such processes occur in complex systems 
made up of assemblies of interacting entities each of which may be 
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relatively simple. Examples of self-organized behavior abound in nature 
and the statistical mechanics dealing with such synergetic behavior has 
found applications (1) not only in physical and biological sciences but also 
in socioeconomic areas. 

Even though many self-organizing systems display a great complexity, 
the essential ingredients for the process are the coupling between the 
members of the assembly, feedback processes, and the presence of fluctua- 
tions. As a consequence, it is appropriate to consider nonlinear stochastic 
models (2) as idealized versions of such systems. An appropriate mathemati- 
cal framework could be a coupled set of nonlinear stochastic differential 
equations whose solutions are described by joint probability densities. The 
self-organized behavior occurring on a macroscopic scale will then be 
obtained via the marginal (reduced) probability densities of the relevant 
macroscopic variables (order parameter). 

The general framework described above has been used earlier (3) to 
study equilibrium and nonequilibrium properties of a model system of 
coupled, anharmonic oscillators in Smoluchowski limit and where the 
anharmonicity originated from a quartic-type potential. In this paper, we 
consider a qualitatively different class of nonlinear stochastic models and 
restrict ourselves to explore only its equilibrium properties. As in Ref. 3, our 
model system is a coupled set of nonlinear oscillators, interacting via a 
mean field whose range extends to the size of the system, and in presence of 
a white, Gaussian noise; further, we also restrict ourselves to the over- 
damped regime. The major difference from Ref. 3 is in the nature of 
nonlinearity: the oscillator potential in our case is asymptotically harmonic, 
and depending on the value of the model parameters, can have single- or 
double-well characteristics. Thus the class of potentials studied in this paper 
can be viewed as perturbations (not necessarily small) of the harmonic 
potential. We expect our class of models to be useful in those physical and 
chemical situations where for example a periodic lattice environment is 
locally distorted to create a double well situation. (4) 

The class of models we study are described in detail in Section 2. In 
particular the single oscillator potential, given explicitly in Eq. (17), is 
introduced via Weber's parabolic cylinder functions; these have many 
interesting mathematical properties (5) which facilitate the calculations of 
several highly nonlinear problems. (6) One of these properties that we shall 
implicitly use throughout the paper is that the Weber function possesses a 
self-similar Fourier transform--a property shared by Gaussians and which 
permits one to obtain exact solutions in various linear problems. 

The rest of the paper is organized as follows. In Section 2, we begin 
with a dynamical statement of the general problem in terms of the multivar- 
iate Fokker-Planck equation for the conditional probability density. Its 
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stationary solution is used to obtain the marginal probability density Ps(x) 
[see Eq. (9)] which involves the oscillator potential. The curvature at origin 
of Ps(x) can be used to determine whether the system is in ordered or 
disordered phase. Through a lemma we obtain a general expression for the 
curvature at origin which facilitates its evaluation for specific models. The 
class of model potentials is introduced in Eq. (17) and its general properties 
discussed. The general form of the potential has four parameters out of 
which two can be scaled away. Thus after a scaling transformation, the 
model involves two potential parameters p and q, an interaction parameter 
0, and the strength of the noise intensity D. The parameter p is related to 
the coefficient of the asymptotically harmonic form of the potential and q 
is a measure of the perturbation (not necessarily small) of the potential 
locally for small oscillator displacements. The model is formally exactly 
solved for D = 1 ; for D ~ 1, an excellent approximation Eq. (27) enables us 
to obtain Ps(x) analytically. This result is given in Eq. (31) and its general 
features are discussed in Section 3. The formally exact solution in Eq. (31) 
is valid for any number of oscillators N and we discuss in Section 3 the two 
extremes of N ~ 1 and N ~ ~ ;  the discussion also includes the behavior of 
Ps(x) when the interaction parameter 0 becomes large. In order to obtain 
the phase diagram for the system in its parameter space, one needs (in the 
N o  oo limit) to know only the curvature (at origin) R of Ps(x). For various 
cases this is evaluated and phase diagrams that result are shown in Figs. 1 
and 2; these diagrams are generic for the entire class of models. In Section 
4, we consider system size effects and evaluate in detail two special cases of 
the general potential. In Section 5, we consider the evaluation of R and the 
phase diagrams for arbitrary noise intensity D. The use of the lemma 
proved in Section 2 enables us to evaluate R without making use of the 
approximation, Eq. (27). We conclude with some further discussion of the 
results in Section 6. Many of the mathematical details are given in the 
appendixes. 

2. THE C L A S S  OF M O D E L S  

Our class of models is introduced in the same manner as in Ref. 3. We 
mention here only briefly the connection to dynamics since this paper deals 
only with the static properties of these models. 

The models are characterized by the set of stochastic differential 
equations (Langevin equations) 

dzj= -[ d V(z)ldt+~dfljt,~ , j = I . . . N ,  z ~  N (I) 

where dfij,t models a vectorial Gaussian white noise for which we shall 
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further assume 

and 

Owing to 

(dBj.,) = 0 (2a) 

( dfij,,dfik,.) -- 28jk6(lt - "r[) (2b) 

the presence of white noise, the stochastic process z(t) is 
Markovian and its conditional probability density P(z, t]z o, to) obeys the 
Fokker-Planck equation 

P(z,  t l Zo, to) 
~t 

-~-E-~jzjN O ([ O V(z)]p(z, tlZo,to)+D~zjp(z,t[Zo,to) (3) 
j = l  

The dynamics modeled by Eq. (1) being of gradient type with diagonal 
diffusion tensor [Eq. (2b)], the stationary solution of Eq. (3) obeys detailed 
balance and then reads 

Ps(z) = Q % x p [ - D - I V ( z ) ]  (4) 

where Q is the normalization factor. 
Following Ref. 3, we take the mean of the coordinates zj as a relevant 

dynamical variable and identify its average over the ensemble Eq~ (4) with 
an order parameter x. The marginal probability density for x then reads 

Ps(X) = f~N~ (zjN-') - x Ps(z)dNz (5) 

or equivalently 

Ps (x) = (2qrQ)- lN;d~ exp( - i~Nx) 

• ( dNz exp[ i( 2 z j -  D- 'V(z)  (6) 
JR N [ J= 

Let us now split the potential V(z) into two parts, namely, 

N N N 
0 V(z)= ~ V s % ) + ~  2 2 ( z , - ~ j ) 2  

j = l  i=1  j = l  

= V , ( z ) - ~  lzj , 0 E a  + (7) 
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where Vl(Z ) denotes an effective single-particle potential: 
N 

j = l  

With the definitions Eqs. (7) and (8), it is easy to realize that the 
stochastic differential equation, Eq. (1), describes an assembly of N statisti- 
cally independent oscillators with a system-size range of coupling and in 
the Schmoluchowski limit. Each oscillator has the potential energy Vs(z). 

Introducing Eq. (7) into Eq. (6), we find 

Ps(x)=(2qrQ)-lNexp( ~ONx2 )2d~exp[-i~Nx + N~(i~)l (9) 

where 

In the following, we shall be interested in situations for which Vs(z ) 
may, according to external parameters, exhibit single- versus double-well 
structure. In particular, for a well-separated and infinitely deep double well, 
the model Eq. (7) approaches the well-known Curie-Weiss model. In Ref. 
3, the authors considered the case Vs(z) = az 2 + bz 4 which led to a com- 
plex expression for Eq. (9a). In this paper, we shall consider another type of 
double-well structure Vs(z) which possesses simpler Fourier transforms 
which arise in Eqs. (9) and (9a). 

Before we introduce explicitly our class of potential V,(z), we shall 
make the following general remarks: 

Let us from now on assume that we deal with symmetric potentials 
Vs(z ). Hence, the marginal density Ps(x) will be itself symmetric and could 
have either an odd or an even number of maxima. In the unimodal 
(bimodal) situation, we shall speak of a disordered (ordered) phase. In this 
paper we do not consider the possibility of P,(x) having more than two 
maxima. It is then obvious that the curvature of P,(x) at the origin 
completely characterizes the phase to which the system belongs. While for 
finite N, the curvature of P~(x) has to be obtained directly from Eqs. (9) 
and (9a), in the thermodynamic limit ( N o  oo), the following lemma holds 
and helps to ascertain the curvature: 

Lemma. Assume Vs(Z ) = V, ( - z )  and such that P~(x) as given by 
Eqs. (9) and (9a) exists. Then we have 

R l i m N - I d 2 p , ( x )  { 0 [ d2 ~(w) o=0] -1 } = - -  --const ~ -  &0 2 (10) 
N--~ c~ d x  2 x = 0  
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where 
~o = i~  ( 1 0 a )  

Proof. As N---~z, we can apply the steepest descent method to 
calculate Eq. (9). We then have 

where 

lim Ps(x)  = exp (ln(const) + ONx----~2 - 
N ~  2D ( 

and hence 

d q,(~o)~=w (12) x = -d- d 

Because Vs(z ) = V~(-  z) and hence P~(x) = P~( -  x)  we have 

~(x) = ~ ( -  x ) ~ ( o )  = o (13) 

Using Eq. (13), we have 

lira N -1 d__._~_ 2 ps(x  ) 
N--->oe d x  2 x=O 

[ d 2 d 2 
c~ / D dx 

(14) 

The Fourier transform of a real symmetric function being itself sym- 
metric, Eq. (12) can be written in the form 

x = ~ ~(~)2~+1_ __d~('~ 0 5) 
?,=o d~o 

d2 ~(r (d~ )-1 = B o = ( 1 6 )  
dw 2 ~ x  x =0 

The assertion, Eq. (10), follows from Eqs. (16) and (14). [] 
In this paper, we shall discuss the results which can be obtained when 

one considers the class of potentials defined by 
P 2 , (2s)l/2zj) 17) V s ( z j ) = ~ z )  - c l n [ y l (  q ] ( 

where the parameters obey 

p, s, ~, and 0 ~ •+ (17a) 

- N ~ x  + N~p(~) } (11) 
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and the function y~(q/2s , (2s) l /2z)  is an even solution of the Weber 
equation(Y): 

d z 

The range of the parameter q is given below. 
Let us remark that Eq. (18) is merely a Schr6dinger equation for a 

single harmonic oscillator. While its (quantum mechanically speaking) 
physical solution is well known in terms of Hermite polynomials, the other 
(non-square-integrable) solutions are also useful in constructing a class of 
potentials which are asymptotically harmonic with strong local perturba- 
tions. (6) As we shall not be restricted to the square-integrable solution of 
Eq. (18), we prefer to call it the Weber equation. 

In order that Vs(zj) in Eq. (17) be well defined, we shall furthermore 
impose the restriction 

q >/ - s  (18a) 

Equation (18a) guarantees that the Weber functions present in Eq. (17) are 
strictly positive. This is explicitly apparent if we consider the expansion (s) 

- s z - ~  ~ .  ( q / 4 s +  1/4)~ (sz2)~ (lSb) 
= e x p  2 ]~=o (1/2)  n! 

where 

+ . )  
(lSc) 

and i F l (a ,b , z )  stands for a Kummer (confluent hypergeometric) func- 
tion.(8) 

From the asymptotic expansion of the Kummer function, (9) we de- 
duce 3 

lira Vs(z ) ~ (p  - se) Izf-~ 2 z2' Vq > - s  (19) 

Equation (19) leads us to impose 

p - se > 0 (20) 

which will guarantee the stability of our class of models. 

q = - s  is a singular point in the parameter space of the Kummer function and leads to a 
different behavior for V~(z); see Eq. (23b) below. This is the consequence of the singularity 
of the gamma function at the origin. 
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find 
Using Eq. (18), and the parity of the yl(q(2s )-  l, (2s)l/2z) function, we 

V (z)z=0 dz 2 = p - qe (21) 

and hence, 

Vs(z ) is double well when p < qe (22a) 

V,(z) is single well when 4 p > q~ (22b) 

In words, the class of potentials Eq. (17) can be viewed as the 
perturbations of an harmonic oscillator, perturbations which may lead to 
single versus double-well structures. 

For special values of the parameters, the potential Eq. (17) exhibits the 
following behaviors: 

z 2 (23b) 

( / / 9 - -Ss  2 
q =  s ~  Vs(z ) =  ~ )z (23d) 

q = (4n + 1)s, n ~ N\{0} 

~ Vs(g) - (]) - se)z2 I (-1)nn[ ] 
2 eln (2n)! H2n(i~fsz) (23e) 

where in Eq. (23c), I_ �88 stands for a Bessel function of fractional order 
and in Eq. (23e) appear the Hermite polynomials of purely imaginary 
arguments. In Sections 4 and 5 we shall treat the special examples, Eqs. 
(23a) and (23e) with n = 1. 

For further convenience, we shall rescale the parameters in order that 
formally two of them are scaled away, namely, c and s. This is achieved by 
using the following transformation in Eqs. (3), (7), (8), and (17): 

t' = 2sDt (24a) 

z ' =  (2s)'/Zz (24b) 

4 The occurrence of more complex structures is ruled out by considering expansions of the 
type Eq. (18b) and remarking that with Eq. (18a), the Kummer 's  functions involved are 
strictly monotonous (see Ref. 10 for a more detailed consideration). 
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and hence, 

? '  =p(2s~)- ' ,  O'= 0(2s~) -1, D ' =  D(~)- '  
(24c) 

q ' =  q(2s)-t, s ' =  l ,  e '=  1 

In the rescaled parameters, the potential Eqs. (8) and (17) then reads 
(we omit the primes) 

N (p+O~ 2 ~v 
V,(z) = E \ ~ }zj - E ln[y,(q,z)] 

j = l  j = l  

j= ,  2 -j=,21n IFj + 4 '2 '211 zf (25) 

Let us remark at this stage that the case s = 0, Eq. (23a) is not covered 
by the scaling transformation Eq. (24c). In Sections 4 and 5, we shall deal 
with this limiting case separately by starting the calculations immediately 
with Eq. (23a). 

Introducing Eq. (25) into Eq. (ga), we obtain 

exp[~p(i~)]=f~dzexp[i~z-(P+O+�89 z2 

[ .)l  o 
)< 1F1 -t- 4 '2  ' 2 (26) 

For the scaled diffusion constant D = 1, the integral Eq. (26) is exactly 
calculable (see Appendix A). For D ~ 1, Eq. (26) is only calculable in 
certain special situations to be considered in Section 5. Finally, for D ----- 1, 
we introduce an approximation which reads 

exp[ ~ ( i ~ ) ] - s  exp(i~z p+ O z2)y,(q,Z ) (27) 
2 0  

In other words, in Eq. (27) we have used the approximation 

~  ( 
~Yl q, (27a) 

The approximation Eq. (27a) possesses the following properties: 

z) (:) lim [yl(q,z)]D-'~ lira y,(q, -----exp (28a) 

and 

d 2 z ) ] D  ~ _ d2 (q, z ) - q (28b) 
dz 2 [Yl(q, z=0 dz2 y~ qD z=0 D 
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Hence, from Eqs. (28a) and (28b), we observe that both the curvature 
at the origin and the leading behavior in the asymptotic region are 
preserved. While for the cases of scaled q = u 1/2 [note Eq. (24c); har- 
monic potential according to Eqs. (23b) and (23d)] Eq. (27a) is a strict 
equality, for D in the vicinity of the unity, the approximation is meaningful 
and will be observed to lead to consistent results. 

Using Eq. (27), Eq. (26) then reads 

exp[ ~( i~) ]=  fadz exp[ i~z-  ( p + 0 + �89 ) 2 D  z2 J 'F1 (-q2 + 41 , 21 , 2DZ2) 

(29) 

The integral, Eq. (29), is performed in the Appendix A. The result, Eq. 
(A.4), when substituted into Eq. (9) gives 

P,(x) = Cexp d~exp - i(Nx 2(p + 0 + �89 

1 1 - z) 2 (30 )  
X lF1 + ~ , ~ , 2 [ ( p q _ 0 ) 2  1] 

where C is a constant. 
Finally, the integral in Eq. (30) is performed in Appendix B. The result 

given in Eq. (B.6), is in a closed operator form which reads [note Eq. (18b) 
for the series form of iFl(a, b,z)] 

Ps(x)=Qexp( 2D ]l 1F' q + - 4 ' 2 ' 2 N 2 [ ( p + O )  2 ~] dx 2 

• exp 2D xa (31) 

where the normalization factor reads 

O =~/-N Q-~(2qrD)(U-1)/2(P + 0 + �89 

x (p + 0 - �89 (31a) 

3. GENERAL DISCUSSION 

On the basis of our result Eq. (31), let us make the following remarks: 
(a) For D -- 1, Eq. (31) is an exact expression valid for any number N 

of the members of the assembly. For D in the vicinity of unity, Eq. (31) is 
approximate with the only approximation being Eq. (27). Furthermore, we 
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show in Appendix C that when N = 1, we indeed recover the single-particle 
result. 

(b) When q = u 1/2 and VD E N+, Eq. (31) reduces to the (exact) 
Gaussian results which are expected for the harmonic potentials Eqs. (23b) 
and (23d). (See Appendix B for an explicit calculation.) 

(c) The operator form Eq. (31) should be understood as the formally 
exact (when D = 1) perturbation series around a Gaussian situation. As we 
have already remarked, the class of potentials, Eq. (17) and Eq. (18), can be 
viewed as a perturbation (not necessarily small) of an harmonic potential. 
Hence, Eq. (31) can itself be interpreted as the associated perturbations 
series around the Gaussian density expected for harmonic potentials. 

(d )  For large values of the argument [(p + 0 + �89 -I]l/2x, the oper- 
ator form Eq. (31) can be approximately expressed in a much simpler form. 
In Appendix D, we show that 

P s ( x ) ~ Q e x p { - N ( p + � 8 9  

~x>>l 

X 1El 4- 4 ' 2 ' 2 0  p + 0 - - I  x2 (32) 

where 

o~ = 2 (p  + 0 + � 8 9  (32a) 

In particular Eq. (32) shows that when the coupling parameter 0 
becomes very large, Eq. (32) presents a single oscillator behavior. Indeed 
we have 

Ps(x) ,-~ (NO)I~2( ~ )U/2 Q -lexp D (33) 

~x>>l 

where V,(x) is the one-particle term of the potential introduced in Eq. (8). 
This behavior is intuitively clear, as for an infinite coupling the behavior of 
one member of the assembly totally influences the whole population. 

Equation (32) can itself be further approximated for x >> 1 by using the 
asymptotic expansion of the Kummer's function. (9) We have 

~x>>,Ps(X)~Qexp(-(2D)-IN[(p+�89189 4. 0 - -  �89 X2 

X ]~(q 4.1) (20)--1 p �89 ~ iN(q/2--1~4) 
p + 0 - �89 x2 (34) 

The leading term in Eq. (34) is of Gaussian nature. This behavior is 
reminiscent of the fact that Vl(Z ) is asymptotically harmonic [Eq. (19)]. 
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Finally, let us remark that 

limPs(x ) = 0, Ix I ~ oe 

which is required for the probability density to be normalizable. 
(e) Having obtained the asymptotic expansion of Eq. (31), one would 

also like to study the behavior of Eq. (31) in the vicinity of the origin. This 
behavior is in principle obtainable by keeping only the constant and 
quadratic terms of the Hermite polynomials present in Eq. (B.5) of Appen- 
dix B. We are in general not able to resum the associated series in a 
compact form and this precludes our drawing the phase diagrams [obtained 
from the curvature of P,(x) at x = 0] in the general situation. This complex- 
ity can be traced back to the fact that the vicinity of the origin is precisely 
where the perturbation of the harmonic potential is the strongest. 

In the thermodynamic limit, we may, however, use the Lemma intro, 
duced in Section 2 to obtain phase diagrams. Indeed, using Eq. (10) 
together with Eq. (A.4) of Appendix A, we obtain 

R = c ~  - p - � 8 9  + D  (p+O+�89189 (35) 

From Eq. (35), we find the critical coupling 0c given by the equation 
p2 _ �88 

R(O~) = 0 ~ 0 r  - (36) 
q - p  

Both Eqs. (35) and (36) are exact for D = 1 and N = ~ .  From Eq. (35) 
we also observe that increasing the strength of the fluctuations (increasing 
D) flattens the curvature, which is physically reasonable and shows that 
our approximation Eq. (20) is consistent. Moreover, in the limit of large 
coupling 0 ~ m, Eq. (35) reads 

lira R = - -  
0---~ ~ 

which is precisely the curvature 
assembly is present. 

const 
D [ - p  + q] (37) 

obtained when only one member of the 

Moreover from Eq. (36) we observe that 

0c 1> 0 ~ p  E [ � 8 9  (37a) 

The boundary 0 c = 0 is obtained when p = 1/2, which according to Eqs. 
(20) and (24c) corresponds to the limit of stability of our models. The other 
limit 0 c = oe which is reached for p = q  corresponds to the transition 
between single- and double-well potential [see Eqs. (22a) and (22b)]. A 
typical phase diagram is sketched in Fig. 1. 

Let us remark that Eq. (37a) clearly shows that a necessary condition 
to have an ordered phase Ps(x) (bimodal) is that the single particle 
potential Vs(z ) Eq. (17), exhibits a double-well structure. This condition 
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5/2 

I/2 

I I I I I I I 

TIT 
F~D=O 

\ /D=I/2 
1 T b ~  " " i 

Ie ~ Ib 
i I I 

I 2 5 4 

0 

I 

I I I 5 6 7 8 

Fig. 1. Phase diagram for q = 5/2, s = 1/2, D = 1, 1/2,0, e = 1, and N - ~ .  Region Ia: 
Ps(x) bimodal, Vl(Z ) double-well, order-disorder type. Region Ib: Ps(x) birnodal, V~(z) 
single-well, displaeive type. Region IIa: Ps(x) unimodal, Vl(z ) double-well. Region IIb: Ps(x) 
unimodal, Vl(z ) single-well. Region III: Ps(x) unimodal, V~(z) single-well. 

also holds for the class of models considered in Ref. 3. At this stage, we 
shall separate two types of transitions which do appear for the present class 
of models, namely, transitions of order-disorder type and of displacive 
type. The distinction is carried out according to whether the effective 
potential Vl(Z ) in Eq. (8) is itself of single- or double-well structure. We 
shall speak of transition of order-disorder type when Vj(z) is double well 
and of displaeive type when Vl(z ) is single well. Using Eqs. (8) and (21), we 
have immediately 

Vl(z ) is single well whenp < ( -  0 + q) (38a) 

V~(z) is double well wheng  > ( -  0 + q) (38b) 

The separation line between the two regimes is sketched in Fig. 1. 

4. S P E C I A L  C A S E S - - S Y S T E M  SIZE EFFECTS 

We shall now consider more closely two particular cases of our class of 
models for which the mathematics become particularly simple. While in 
this section we again restrict ourselves to D--~ 1, Section 5 will deal with 
arbitrary strength of the fluctuations. In this section, we shall not, however, 
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restrict ourselves to the thermodynamic limit and therefore we shall be able 
to discuss system site effects. 

4.1. The C a s e q = 5 / 2 ( s = l / 2 )  

For this value of the parameter q, the potential Eq. (25) simply reads 
[see Eq. (23e) with n = 1]: 

VI(z) ~ - "  E ]7 + 0 -- �89 -- ln(1 + (39) 
j=~ 2 

In Appendix E, we calculate the probability density for the order 
parameter when the approximation Eqs. (27) and (27a) hold. Using Eq. 
(E.2) we have 

where 

- N ( p - � 8 9  2 1 P~(x) = Qexp 
?-5 q = 5 / 2  

(40) 

Q_. = Q -'~[N (2~'D )(N-')/z(p + 0 + �89 )N(p + 0 - 1 )  - 3 N / 2 + I / 2  (40a) 

and 

= 2 ( p  + o + �89 (40b)  

From Eq. (40), we calculate the curvature at the origin of P~(x). We 
have 

R = N  I d2 (Ps(x) )= Q-~(-p+�89 Q-~NS2(&N) (41) 
dx2 q=5/2 x=0 

where 

N N ~ - k  SI(a,N)= ~] (1.)(Na) ( -1 )k (2k) ! (k ! )  ' (41a) 
k = 0 \  rv / 

and 
N 

N ( 6 - 2 )  2 (N](Na)-k(-1)k-'(2k) ! [ ( k -  1)!]- '  S2(&N) - D k=j \ k ] 

- X ( ~  - 2) d 
- aD  d ( 8 - ' )  S,(8, N) (41b) 
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Using the identity (~~ [see Eq. (18c) for the notation] 

(N)  = ( -  1)k(-  N)k(k ' ) -~  

we obtain 

599 

(42) 

S,(c7, N ) = 2Fo( - N, �89 l) (43) 

for a generalized hypergeometric function. ('2) 

_ 8(N~2)- 1 

Using the relation (~3) 

d2 i F o ( � 8 9  + O(N -2) 

(47) 

, ro (a , x )  = ( 1  - x)  -a 

where 2Fo(a, b, x) stands 
Equations (41b) and (43) imply 

R = Q D  - l I ( -  p + �89189 

where in Eq. (44) we have used the fact that 

d dx 2F~ = abgF~ + 1,b + 1,x) (44a) 

Equation (44) clearly shows that the curvature R is system size depen- 
dent and that increasing D flattens the curvature. Moreover, in the strong 
coupling limit (0 ~ ~ ~ 8 -~ m), Eq. (44) simply reduces to 

R = 0 O - 1 [  _ p  ..1_ 5 ] (45) 

where we have used the identity 

2F0(a, b, 0) ~ 1 (46) 

Equation (45) is immediately recognized to be the curvature one would 
obtain if only one member of the assembly were present (remember that in 
this case q =- 5/2). 

For large N, we may perform a system size expansion of Eq. (44). This 
is achieved by observing 

S,(& N)  = 2Fo(-  N, �89 

~ ,g0(  �89 , - 4 (S )  -1) 
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Eqs. (47), (41a), and (41b) imply 

R~OD-I( P+O+�89 ) 

• - p - � 8 9  p - ~ - ~  

[ 15 ((P+�89189189 } (48) + 

In the thermodynamic limit (N ~ m), Eq. (48) immediately reduces to 
our previous result Eq. (35) (for q = 5/2) and hence leads to 

p2 _ �88 
(49) 0c- _~_p 

Moreover, let us remark that according to Eqs. (20) and (24c), the 
square bracket in Eq. (48) is positive definite. This boundary term has then 
the tendency to increase the curvature and hence reduces the value of 0 c for 
a given p. From Eq. (48), we do observe that 0c will be the solution of a 
cubic equation obtained from R(O~) = 0. It is interesting to remark that in 
the limiting situation for whichp = 1/2 and 0 = 0, the curvature R as given 
in Eq. (48) identically vanishes. This behavior is of course expected for the 
free particle model [p = 1/2 is the limit of stability: see Eq. (20), with the 
rescaled s = 1/2]. 

4.2, The C a s e s = 0  

As mentioned before, this situation should be considered separately as 
the scaling transformation, Eqs. (24a)-(24c), becomes meaningless in this 
limit. Hence we reconsider Eq. (23a) and the density for the order parame- 
ter reads [see Eq. (9)] 

Ps(x) = (2~rQ)-ZNexp ----a-- d~exp[-i~Nx + Nt)(i~)l (50) 
s = 0  

where 

and 

19 = D / c  (50a) 

= expl t os t  ll (51) 
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For / )  in the vicinity of unity, we again use the approximation Eq. (27) 
which leads us to write Eq. (51) in the form 

exp[+(i~)]~;dzexp[i~z (P+-;O)z2]c~ (51a) 

Using Eq. (51a), the integral in Eq. (50) is performed in Appendix F, 
where Eq. (F.3) leads to 

where Q is given in Appendix F. 
At this stage, let us remark that Eq. (52) is valid for N = 2n + 1, 

n C N. A similar calculation for N even, can also be performed but we do 
not consider it here. In particular in the thermodynamic limit N ~ • both 
N odd or even lead to the same results which we have explicitly verified. 

Using Eq. (52), the curvature R of P~(x) at the origin reads 

R N - '  d2 P,(x) Q / ) - ' [  " " . . . .  pSt (a ,N)+N- 'S2(S ,N)]  (53) 
dx2 x = 0  

where 

and 

s = + 0 )  

( N - -  1 ) / 2  , . [ 

SI(a,N)=- A 2 (N]2 - sexp [  
k=0  / L 

-q(N4Ndz- 2k)2 I 

(53a) 

(53b) 

to be system size dependent. 
In the thermodynamic limit, the sum Sj(~, N) can be calculated in the 

continuous limit and by using the property that 

_ _ N _k l2N- , ]  (54) 
N - - > ~  \ (2~rN)l/2 ] j 

E S2(a'N) = q ~ 2-Nexp 4-N& ( N -  2k) 2 
k = 0  

qN d ^ ^ = - -  S I ( O L  , N )  ( 5 3 c )  
d[ q(48) - I ]  

Using Eqs, (53a)-(53c), the curvature R in Eq. (53) is again observed 
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With Eq. (54), we have 

lim Sl(a,N ) = dk 2 exp 
N--+~ + (2~rN)~/2 

= (  2 8 ~  )1/2 

Using Eq. (55) and (53c), the curvature Eq. (53) reduces to 

p+O+q -P+q p+q+O 

and hence 

(55) 

(56) 

.p2 

R(Oc) = 0 ~ 0  c - (57) q - p  

From Eq. (57) we can draw the phase diagram--Fig. 2. 
Moreover, Eq. (56) indicates that, in the limit of validity of Eq. (27), to 

increase the noise strength D has again the effect of flattening R. Further- 
more, for 0---> ~ ,  the single oscillator behavior is also immediately recov- 
ered, namely, 

R = - ' ( - p  + q) (58) 
0---> oo 

P 

I/2 

I/4 

I [ I I I 

T~ 

fD=O 

Ia I t i 
I 2 5 

0 

Fig. 2. Phase diagram for q=1/2, s=0, D=1,1/2, �9 and N--+m. Regions as in 
Fig. 1. 



Study of a Class of Models for Self-Organization: Equilibrium Analysis 603 

Let us close this section by noting that Eq. (57) can also be directly 
obtained from our previous result Eq. (36) in the limit p, q -~ oo. This limit 
is indeed reached when s ~ 0 in our scaling transformation Eq. (24c). 

5. PHASE DIAGRAM FOR ARBITRARY NOISE INTENSITY 

In this section, we shall study the behavior of our models for arbitrary 
noise intensity D. We shall again consider the special cases q - - 5 / 2  and 
s - - 0  and restrict ourselves to the thermodynamic limit N ~ oc for which 
our Lemma Eq. (10) holds. 

Let us start with the case q = 5/2  which by using Eqs. (9a) and (39) 
leads us to 

exp[ ~(~0)] = fRexp( 0z - ~'z2)(1 + z 2) F dz 

= ( ~ ) ' / 2 e x p ( r  ~ F - 1  F ic0 

where 

F = D - l  (59a) 

= (p + 0 -  � 89  (59b) 

~0= i~ (i = fS-]-) (59c) 

Now we will use our Lemma Eq. (10) and therefore, we have to 
calculate 

d2 ~b(~)o 0 - 1  dw 2d2 ~ ( ) ( ) t  4f  )x ( ) = l n ~  F - 1  H2 x i~0 B 0 - -  _ _ _  
&02 2~" + - -  

= x = o  z v s  ~ = o  

_ 1 1 d ln2Fo(_F ,  1 1 )  (60) 
2~ + ~2 d(1/~) 2 '  

Then using Eqs. (10) and (60), we immediately have 

ill ) R = const - + -~ (61) 

Equation (61) provides us with the exact curvature R of P,(x) for 
arbitrary D = F-1 ,  q = 5//2, and N--> ~ .  The critical coupling 0c, obtained 
from Eq. (61) by the equation R(Oc) = 0, is in general impossible to find by 
analytical means. Indeed, the equation R(Oc) = 0 is in general transcenden- 
tal; it reduces to a polynomial of degree F when F - -  D -1 ~ N. In the 
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following we shall discuss three particular situations for which R (0c) takes 
however simpler forms. These situations are reached when D = 1, 1/2, 0. 

5.1. D =  I 

This case has already been considered in Eqs. (35) and q = 5 /2  and in 
Eq. (48) with q = 5 /2  and N-~  m. We rederive it here just for the sake of 
completeness. We have 

( , 2Fo - 1, 2 ' (2~'---) 

and hence using Eq. (61) we obtain 

e - - c o n s t  0 f + ~  ~ + 3  (63) 
p+O+~ 

5.2. D = l / 2  

In this case Eq. (60) takes the form: 

8o = + y 2  

= ( ~ y 3  + 3y2 + y ) ( 2  + 2 y +  3 y 2 ) - '  (64) 

where in Eq. (64), we haveused  the fact that 

2F0(-2, �89 - y )  = 1 + y  + 3 9 (65) 

and the notation y = ~-1. 
Using Eq. (64), the curvature Eq. (60) reads 

R = c o n s t  - 2 p + 1 + 2  1 5 / 4 + 3 y _ 1  + 

and hence 

R(oc) = o 3  

c = 
2(p - 2)(p + �89 + [ 4 ( 2 - p ) 2 ( p  + �89 + (5 - 2p)(p - �89 + 1)11/2 

5-2p 

(67) 
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Equation (67) leads to the phase diagram sketched in Fig. 1 for 
D = 1/2. Figure 1 explicitly shows that decreasing the strength of the 
fluctuations causes the system to approach the behavior of the single 
oscillator, a result in agreement with our intuition. 

5.3. D = 0  

Let us finally consider the case of vanishingly small fluctuations. In 
this case, we have 

lim 2Fo - F ,  1 1 = 1 -  + O ( F  -l) 
D-~=F___~ 2 ' 

where 

Using Eq. (69), Eq. (61) takes the form 

o 1 Bo 

(68) 

(68a) 

-1/2 D 

Remark that Eq. (69) explicitly indicates that we have kept the first order 
in D. 

Using Eq. (69) into Eq. (10), we have 

const [ 0 _ 2  A _ const 
D~01imR-- ~ (~-- 1)] D [ - p  + 5 ]  (70) 

Equation (70) is independent of 0 and hence the phase diagram is 
degenerate. Equation (70) gives the same curvature as the one that would 
have been obtained if only one member of the assembly were present. This 
clearly indicates that we are in the deterministic limit and hence the phase 
diagram is degenerate with a step function: Fig. 1 (D = 0). 

Let us finally investigate the case s = 0 in the thermodynamic limit 
N ~ ~ and for arbitrary noise strength. 

Using the same technique as above we have with Eq. (23a) 

2e& ~ dz 

= 2~ exp. w2 
•(p + o) 2(p + o)P 

• ~ / /~,2_iexp[  q ( ~ - 2 k )  2 ] [ r  (71) 
k=o~,k] [ 2F--(p + O) cosh F(p + O) 
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where 

From Eq. (71), we obtain 

where 

e = / ) - 1  (71a) F=D 

J~2~(~o) = ~  1 + 2q d ln[Zl(p,0, F ) ]  (72) 
(e + o)P ?(p + o) aq 

A q ( ? _  2k)2 

In particular for F = 1 = e/D,  we have 

d2 ~p(~o) ~ o -  p + q + 0 (73) 
d~o 2 = (p + 0)2 

which immediately leads to [see Eq. (10)] 

R = c o n s t - p + q  p + O + q 

Equation ,(74) is identical with our previous result Eq. (56). 
For F = 2, we obtain from Eqs. (72) and (72a) 

d2 ~(~)~ o -  1 + q (75) 
d,o 2 = 2(e  + O) (p + O)~x(e,O) 

where 

X(p,O) = 1 + e x p [ - q ( p  + 0 ) - '  1 ~[1,21 (76) 

Using Eq. (75) and Eq. (10) we find 

R = const2 - p  + q (77) 
p + 0 + 2q + (p + O)exp[ -q (p  + 0)-11 

From Eq. (77), the critical coupling is implicitly given by the transcen- 
dental equation 

R(Oc) = 0 (78) 

When the ratio q(p + 0)- ~ << 1, we may expand the exponential which 
occurs in Eq. (77) to get 

I 2 q ( p + 0 )  ] (79) R ~ const 2 - p  + 2p + 20 + q 
q(p + 0 ) -  ~ << 1 
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and hence in this limit we obtain 

R(Oc) = 0 ~ 0 ~ - -  2/72 -/Tq (80) 
q - p  

In the region where p < q (namely, where the ordered phase can 
appear), we observe that when q/(/7 + O)<< 1 

/72 
0 c - -2Pz-P~q  < - 0~ (81) 

D=l/2 q--17 q - P  D=I 

Equation (81) indicates once again that decreasing the fluctuations 
strength decreases the critical coupling 0~, a result in agreement with our 
previous observation. 

In Figure 2 we sketch the phase diagram for the case s = 0 and D = 1, 
1/2 by using Eqs. (57) and (78). 

6. CONCLUSIONS AND SUMMARY 

We have studied the equilibrium properties of a class of models which 
consists of an assembly of coupled nonlinear oscillators in the Schmolu- 
chowski limit. The coupling is of system size range and each member of the 
assembly is subject to a single versus double-well type potential according 
to a set of external parameters. In our class of models, the oscillators are 
statistically independent and hence the stationary probability density can 
be found immediately (detailed balance) and permits us to express the 
probability density of an order parameter defined as the arithmetic mean of 
oscillator-coordinates. 

While for quartic type potential, a similar study has been performed in 
Ref. 3, we consider here perturbed harmonic potential which in contrast to 
Ref. 3 permits us to obtain exact analytical results. Indeed, the perturbed 
harmonic potentials we introduce here are expressible in terms of Weber 
parabolic cylinder functions which possess the important property of hav- 
ing self-similar Fourier transforms (a precious property shared by Gauss- 
ians). The main results of our paper can be summarized as follows: 

(1) For a special value of the noise intensity D (namely, unity in our 
choice of scaled parameters), we obtain in the thermodynamic limit exact 
phase diagrams for the whole class of models. Our results follow from a 
lemma (introduced in Section 2) which is a straightforward consequence of 
the steepest descent method, and which can be used to write the marginal 
probability density of the order parameter in the N-~ m limit. For D in the 
vicinity of unity, we provide an approximation Eq. (27) which is found to 
lead to consistent results. 
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(2) In the phase diagram obtained, we distinguish between two types 
of phase transitions which occur for the class of models. Namely, we have 
transitions of the order-disorder type which occur when the effective 
potential, V 1 in Eq. (8), is of double-well type and of displacive type which 
arise when the effective potential is itself a single well. 

For D = 1 and special choices of the external parameter, which control 
the shape of the potential, we can solve the problem exactly for any 
number of oscillators. This allows us in particular to perform a system size 
expansion to obtain the correction term due to the finite size of the system 
(boundary term). See Eq. (48). This boundary term is observed to have a 
definite sign. Moreover, for the same intensity of the noise and identical 
values of the parameters, we stress that a finite size system may exhibit a 
disordered behavior while the same system considered in the thermody- 
namic limit presents an overall order. This is a concrete illustration of the 
remark made in Ref. 1 which shows that the strength of the noise in 
cooperative systems can be altered by changing the number of the members 
composing the assembly. This fact then strongly suggests that one should 
take special care when using the steepest descent method, especially near 
the transition points. 

(3) Finally, for special values of the parameters, we are able to obtain 
exact results for arbitrary noise intensities when the thermodynamic limit is 
considered. The dependence of the phase diagram on the noise intensity D 
is shown in Figs. 1 and 2. In the limit of vanishingly small fluctuations, we 
are also able to observe the way the phase boundary between disordered 
and ordered regions degenerates into the expected step function. 

APPENDIX A 

Let us consider the integrals of the form 

exp[~b(i~)] =;dzexp( i ( z  - ctz2) lFl(a,�89 flz 2) (A.1) 

We first introduce the integral representation (14) 

1Fl(a'�89 ' flz2)-- F(a)2 f +dXexp(-)t2))Qa-lcosh(2 /-fiXz) (A.2) 

Introducing Eq. (A.2) into Eq. (A.1), reversing the order of the 
integrations, and performing one integration gives us 

exp[+(i~)] = ( ; )  F--~ expk - ( 2 ( 4 ~ ) - '  ] 

><~+dXexp[-X2(1-  3/oO]X aa ] c o s ( ~ - ' ~ X )  (A.3) 
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The integral in Eq. (A.3) is a variant of Eq. (A.1) and can be found in 
Ref. 15 with the result 

exp[ ~p(i~) ] =~[-~aa-'/2(a - B)-aexp[ -~  2(41)- '] 

( 1 fi~2 ) (1.4) 
X ,f ,  a, 2 , 4a(~---fl)  

Then using the notation 

a = (p + O + 1) (2D)- '  

fl = (2D) - '  

and a = q/2  + 1/4, we find Eq. (30). 

APPENDIX B 

Here, we consider the integrals of the type 

Iq (X)=s  N~2a ) [ ,F , (a , �89  u (B.1) 

Let us introduce the notation 
M 

,F,(a,�89 _f l~2)= lim s Ak(--fi~2) k (B.2) 
M > ~  k = O  

where 

A k = (k ! ) - t (a )k[ ( �89  

Further, we introduce the multinomial formula 

(B.2a) 

"~ N! (X,)n'(X2)n2... (Xp) np (B.3) 
( X l  "3!- X 2  "{- " ' "  Xp) N= 2 nl!n2! . . .  rip! 

where the sum ~ is taken over all nonnegative integers nj ( j  = 1 . . .  p) for 
which we have ~ =  lnj = N. 

Hence, Eqs. (B.3) and (B.2) imply 

where 

[1Fl (a , � 89  N= lira ' ~ ( M ,  nk)(--fi~2) ~ (B.4) 
M---~ ~o 

m nk 
1-Ik=o(Ak) 

~(M, nk) = N! (B.4a) 
M | 
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and 
M 

O(k) = ~ kn k (B.4b) 
k = 0  

Introducing Eq. (B.4) into Eq. (B.1) and performing the integration 

and 

Finally, using the very definition of the Hermite polynomials, (16) Eq. 
(B.5) can be written in the form 

-N- )I/2 fi O(k) d20(k) Nax2 n 
= exp 

M - ) o e  

( )  Nax2 (B.6) = , exp 
-N- ~F1 a' 2 N 2 dx 2 4 

Then using the notations 

B =  D _ 2 (B.6a) 
2 I ( p + 0 ) 2 _ 1 / 4 ]  a ( a D -  2) 

a = q /2  + 1/4 (B.6b) 

a = 2 D - l ( p  + 0 + �89 (B.6c) 

Eq. (31) is obtained. 
Let us check the validity of Eq. (B.6) for the special case when the 

rescaled q = 1/2, which according to Eq. (23d) should reduce to the 
Gaussian results. Indeed, we have 

I1/2(x ) = ( N )  '/2 exp N2 dx a exp 4 

= ( N )  1/2exp 4 4 -  ~ .  Hak 2 

gives 
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At this stage, we introduce the multiplication theorem (17) 

( a ) . ( y  - i)" 
iFl(a,b, yz) ~ y - - a  

,=o (y)"n! ,F,(a + n,b,z) (B.8) 

Then using the Kummer transform in Eq. (B.7) and the expansion Eq. 
(B.8), we obtain 

[ ~ra ]'/2exp[ Nax 2 ] (B.9) 
I~/2(x) = N(1 + aft) 4(1 + o@) 

which is indeed of the expected form. 

A P P E N D I X  C 

For N = 1 Eq. (31) reads 

es(X) = 0exp( ~ ~ )  k (a)"(fi)n d2" exp( -Nax2  
n=O (l/2)nn[" dx 2n 4 ) 

=Qexp ~ + ~ - ~ x  2 (1/2),n!4,,H2,, -4) x 

At this stage, we use the generating function {18) 

(C.t) 

(1- t)-P,Fl(fl, 2. ----)=n=ok (1/2). 

= k (]))n(--1)nH2n(~/7) tn 
,=o (1/2) 4%! (C.2) 

where L~(z) stands for a generalized Laguerre polynomial. With Eq. (C.2), 
Eq. (C.1) becomes 

( 1 
~/~ exp 2D IFI a, ~ , 2D 

=Q- l e xp [  - ( P + � 8 9  ] ( 1 1 x 2 ) (C.3) 
2D x2 1F1 q + 4 ' 2 ' 2D 

which is indeed the single-particle result in the approximation Eq. (27) for 
D--1.  
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A P P E N D I X  D 

Let us now consider the large ~ -x  asymptotic behavior of Eq. (31); 
is defined by Eq. (B.6c). To do this, we keep the highest degree of the 
Hermite polynomials in the expansion Eq. (B.5). We then have 

vrc~ ( N~x2] lim [~q,(M,n,)(~N)O(')(N0~x2)~ i Iq(x) =(~)'/'exp 4 / M ~  
~x>>l 

t , 
where the notations are given in Eqs. (B.6) and (B.6a)-(B.6c). 

APPENDIX E 

When q = 5/2, Eq. (B.1) takes the particular form 

I5/2(x ) = fd~e• N_~' )I,F,( ~ ,~ , B~') ]N 
Ol 

=;<~.xp[ ,,.. < ,  v~l],, 2~<>- 

" E 1 + ,~/~) 

2(1 + cq~) 1/2 

The integral Eq. (E.1) is given in Ref. 19 and we obtain 

qra 1/2ex p I5/2(x) = N(1 + ~j3) 4 + c~fl) 

~/E l' I/~o t'xl N /~a H2 k 
• ~ 2N(1 + aft) 1 + aft 2 k = O  

where the notations are given in Eq. (B.6) and in particular 

cr + cg8)- '= (p + 0 -  �89 

(E.I) 

(E.2) 

(E.2a) 
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APPENDIX F 

Here we consider integrals of the type 

( ONx2 )s + N,( i~) ]  P~(x) = N(2~rQ )-'exp 
s = 0  

where 

exp[ ~b(i~) ] = f dz exp(i~z - Sz2)cosh fiz 

a = (p + 0 ) ( 2 D ) - '  

a=(~) l" 
After performing the integration over z Eq. (F.1) becomes 

~,~x~ = ~0~-'(-~ , ~ 2  t ~ox~ ~! ~ 1 
,=o ~ ) e x p l ~  + 4a ] 

(F.1) 

(F.la) 

(F.lb) 

(F.lc) 

xfRd~exp(-ifNx N~2 (F.2) ~)[c0s(~)l~ 
For N = 2K + 1, K E N, we have (2~ 

_ ONx 2 Nfi 2 1 P,(x) = N(2rrQ)-'( rr )U/2ex p ~ + ~ 2 2-U 
s = 0  0~ = 

where 

• 1 6 3  
N 2}E 
4& cos ( N -  2k) 

=~exp[ Nx2(~ O/] 
IA 2j 

( N )  J32(N - 2k) cosh(xfi(N-2k)) 2 - Nexp 4&N 
k = 0  

(F.3) 

X 

Q=~- 1 /~(Q~-) '(~)U/2ex p -~-- 
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